公益財団法人 住友電エグループ社会貢献基金 事業報告書

(自平成27年4月1日至平成28年3月31日)

1. 事業の概要

(1) 平成27年度の事業概況

第7期の平成27年度は、住友電気工業株式会社から寄付金163,883千円余(カフェテリアプランを通じた寄付金883千円余を含む)の寄付を受け、事業として大学講座寄付10件、実施金額112,000千円と、奨学金支給135名、実施金額32,243千円余、学術・研究助成21件、実施金額20,858千円余の、総額165,102千円余の助成事業を実施しました。

		<u> </u>
(イ) 大学講座寄付	10件	112,000千円
(口) 奨学金支給	135名	32,243千円余
(ハ) 学術・研究助成	21件	20,858千円余
合 計		165,102千円余

(2) 平成27年度の経理状況

事業活動収支は、収入面では、寄付金収入として住友電気工業株式会社から 163,883千円余(カフェテリアプランを通じた寄付金883千円余を含む)の寄付を 受け、これに基本財産運用収入18,793千円余を加え、収入合計は予算対比 2,394千円余増の182,676千円余となりました。

一方、支出面では、事業費支出はほぼ当初計画通りに実施しましたが、国内学生向け奨学金において、奨学生が当初計画した20名から3名減となったことなどから、予算対比1,667千円余減の165,532千円余となりました。

管理費支出は、旅費交通費が当初計画に比べ減少したことなどから、管理費合計では 予算対比1,435千円余減の13,544千円余となり、事業活動支出合計は 予算対比3,103千円余減の179,076千円余となりました。

投資活動収支及び財務活動収支については、今年度も国債を購入しておりませんので投資有価証券取得支出はございませんでした。

以上の結果、当期収支差額は3,599千円余の黒字となり、前期繰越収支差額9,760千円余とあわせて13,360千円余を次期に繰り越しました。 指定正味財産増減計算は、今期、基本財産の増減はなく、期末の指定正味財産は2,000,00千円で変動はございません。

(3) 平成27年度事業

平成27年3月2日開催の第28回理事会で決議・承認された事業計画に基づいて、 次の大学講座寄付、奨学金支給、学術・研究助成を実施しました。

(イ) 大学講座寄付

産業社会の発展に資する優れた大学講座(エネルギー・バイオテクノロジー・医療をはじめとする最新テクノロジー探求、地球温暖化・環境保全等現代の諸問題への対応研究、ものづくりや起業家(アントレプレナー)をはじめとした次世代を担う優れた人材の育成など)に対して寄付を行うもので、平成27年度は継続案件9件に加え、新規の大学講座1件を選考し、合計10件、総額112,000千円の寄付を行いました。

大学名	講座名	金額(千円	J)
大阪大学 大学院工学研究科	国際環境生物工学講座	15,000	О
大阪大学 大学院工学研究科	ものづくり技術者、研究者養成講座	4,000	О
東北大学 未来医工学治療開発センター	ニューロ・イメージング研究	18,000	О
神戸大学 大学院海事科学研究科	津波マリンハザード研究講座	10,000	О
一橋大学 大学院法学研究科	震災・原発事故からの復興に向けた 環境法政策講座	10,000	О
佐賀大学 医学部循環器内科	高齢慢性心疾患における終末期 医療に関する研究	15,000	О
京都大学 工学研究科光・電子理工学 教育研究センター	工学の高度人材に対し、科学技術 アントレプレナー育成のための実践的教育	10,000	0
電気通信大学	IT 融合とビッグデータ利活用イノベーション 人材(データアントレプレナー)育成講座	8,000	0
東京大学 産学連携本部	実践的若手アントレプレナーの育成、教育	2,000	0
広島大学 大学院医歯薬保健学研究院	小胞体マイクロフラグメント解析による疾患病態の理解 と臨床応用(※)	20,000	0
	合 計	112,000	0

(※) 新規案件

(口) 奨学金支給

日本で就学する外国人留学生、国内学生及び海外の大学に在学する現地学生のうち、学業並びに他の分野でも模範となるよう研鑽に努め、専門分野のみならず幅広い知識と見識を求め、大学・大学院においては科学技術分野を専攻する学生を対象として、平成27年度は、選考の結果、下記の奨学生に対し、奨学金を支給しました。

日本の外国人	奨学生			実施額(千円)	実施時期
留学生	 継続(※1) 東京大学1、京都大学1、大阪大学1、 東北大学1、名古屋大学1、一橋大学1、 東京工業大学1、慶應義塾大学1、 早稲田大学1 			9,600	平成 27 年 4 月~ 平成 28 年 3 月
	新規 東京大学 1、京都大学 1、大阪大学 1、 東北大学 1、名古屋大学 1、一橋大学 1、 東京工業大学 1、慶應義塾大学 1、 早稲田大学 1			10,800	平成 27 年 4 月~ 平成 28 年 3 月
	計		18名	20,400	
日本の 国内学生 (※2)	新規 北海道大学 1、山形大学 1、東北大学 1、 筑波大学 1、東京大学 1、東京工業大学			6, 120	平成27年4月~
(%2)	早稲田大学 1、慶應義塾大学 1、 京都大学 1、大阪大学 1、神戸大学 1、 名古屋大学 1、広島大学 1、九州大学 1、 関西大学 1、同志社大学 1、立命館大学 1				平成28年3月
75 41 00 1 274	中国	蘇州大学	20名	約1,102	平成28年2月
海外の大学 現地学生		中山大学	10名	約586	平成27年8月
一九四十二		上海外国語大学	10名	約592	平成27年11月
	タイ	泰日工業大学	20名	約1,165	平成27年8月
		キングモンクット 工科大学 (※3)	20名	約1,228	平成27年11月
	ベトナム	ハノイ工科大学	20名	約1,050	平成28年3月
	計	•	100名	約5,723	
	合計		135名	約32,243	

- (※1) 継続奨学生9名のうち2名は平成27年9月をもって奨学金支給を終了
- (※2) 平成27年度から開始
- (※3)新規支給校

(ハ) 学術・研究助成

科学技術の進歩や産業社会の発展に寄与する優れた研究、自然科学や社会科学の基礎研究、 資源・エネルギー・地球環境・ライフサイエンス等現代の重要課題に関する研究、新素材を はじめとした産業のイノベーションが期待できる研究 など特に、持続可能・循環型社会、 超高度情報化社会、省資源社会、長寿・高齢化・介護社会の本格的到来や世界的な都市化の 進展が見込まれる中、主としてこれらの社会ニーズに対応する研究に対し助成を行うもので、 平成27年度は、応募総数186件の中から選考の結果、21件、総額20,858千円余 の助成を行いました。 (研究者50音順、敬称略、単位:千円)

1	りがなりいました			
研究者	所属	役職	件名	助成額
網井秀樹	群馬大学	教授	フッ素の特性を活かした世界最長アセン化合物創製への挑戦	950
伊藤傑 横浜国立大学	助教	キラル型カーボンナノチューブの光学分割を指向した C2 対称	1,000	
		分子ピンセットの創製		
河野貴子	河野貴子 立命館大学	准教授	細胞遊走を制御するアクチン細胞骨格の時間的・空間的な統合	800
			制御原理の解明	
財津慎一	九州大学	准教授	連続発振テラヘルツ分子光変調器の開発	1,000
清水章弘	京都大学	助教	電解液を用いない有機レドックス・フロー電池の開発	1, 250
杉﨑満	大阪市立大学	准教授	時間分解超解像度顕微鏡技術の開発	900
	名古屋市立大学	±#.4⊤*	アレルゲン親和性を基盤とした高齢者アレルギー発症機構と	900
鈴木亮	石口座川立八子	講師	戦略的脱感作療法の確立	900
関修平	京都大学	教授	超高速界面伝導診断法の開発	850
高岩昌弘	徳島大学	教授	エネルギー自律型空気式歩行支援シューズの開発	850
Ladderell . L.	1 # 1 2/4	HI 44	HMGB1 が制御する骨髄由来免疫抑制細胞における免疫抑制メカ	
立花雅史	大阪大学	助教	ニズムの解明	1, 100
		1.1.1.4	高い即効性と持続性を有する抗鳥インフルエンザウイルス素	1, 150
陳中春	鳥取大学	教授	材の開発	
		(学 助教	プラスチック上におけるゲルマニウム・ナノワイヤの均一合成	
都甲薫	筑波大学		と太陽電池応用	1, 400
			マイクロ多孔体内蒸発熱流動の解明とループヒートパイプ最	
西川原理仁	助教	適形状設計への応用	1, 250	
			力学的刺激を模倣する新型骨粗鬆症治療薬の開発を目指した	
早田匡芳 筑波大学	准教授	力覚情報処理機構の解明	1, 150	
原田健一	東北大学	助教	微弱磁場検出のための光格子を用いた超高感度磁力計の開発	1, 050
<i></i>	沖縄工業	174474	produced production and a contraction of the production of the pro	2, 000
藤井知	高等専門学校	教授	マイクロ波を用いた金属酸化物の高温還元反応に関する研究	950
前川洋一	岐阜大学	教授	寄生戦略分子の構造解析に基づく新規免疫制御機構の解明	1,050
11.17 - 11.1	7,477.1	1/1/	衝突緩和を積極的に利用する放射性セシウムの高効率レーザ	1,000
松岡雷士 広島大学	広島大学	助教	一同位体分離の研究	750
水関健司	 大阪市立大学		海馬体神経回路の動作原理	900
小凤连叮	八败山亚八子	初文	分子内電荷移動を利用した超高効率発光ポリマーの創製と塗	900
安田琢磨 九州大学	九州大学	大学 教授	がすれている。 布型有機 LED への応用	800
	D-1 E-1 -	114 14	和完化	
依田成玄	Dana-Farber	リサーチ	希少がんからのがん遺伝子探索	約808
	Cancer Institute	サイエンティスト		
合	計			約 20,858

2. 役員·評議員(平成28年3月31日現在)

(50 音順)

	ī	(30 日/収)
役 名	氏 名	主たる職業
理事長	松本 正義	住友電気工業株式会社 社長
常務理事	賀須井良有	住友電気工業株式会社 常務取締役
理事	井上 治	住友電装株式会社 代表取締役執行役員社長
	藤井 昭	住友理工株式会社 顧問
	松澤 佑次	一般財団法人住友病院 院長
	吉川 弘之	国立研究開発法人科学技術振興機構 特別顧問
監事	高坂 敬三	色川法律事務所 弁護士
	谷 信	住友電気工業株式会社 常務取締役
評議員	天野 嘉一	日新電機株式会社 取締役会長
	伊東 浩司	甲南大学 スポーツ・健康科学教育研究センター 教授
	乙幡範	株式会社テクノアソシエ 顧問
	菅沼 敬行	住友電設株式会社 取締役会長
	竹中 裕之	住友電気工業株式会社 副社長
	田中茂	住友電気工業株式会社 技監
	三野 哲治	住友ゴム工業株式会社 相談役
	山内 直人	大阪大学大学院国際公共政策研究科 教授

天野 嘉一氏(評議員)は、平成28年4月9日に逝去されました。

3. 主要な事業経過

平成27年 5月18日

第29回理事会(書面決議)

- ・第6期定時評議員会招集の件
- ・第6期定時評議員会付議事項の件

6月1日

第30回理事会開催

・平成26年度(第6期)事業報告及び計算書類等承認の件

第6期定時評議員会開催

- ・理事4名選任の件
- ・監事1名選任の件
- ・定款一部変更の件

第31回理事会開催

- ・役付役員選任の件
- ・平成27年事業(奨学金支給)実施の件
- ・平成27年度選考委員選任の件

6月15日

第6期臨時評議員会開催

・平成26年度(第6期)事業報告及び計算書類等承認の件

7月8日

第1回選考委員会開催

・申請書類閲覧及び選考方法確認の件

9月15日

第2回選考委員会開催

- ・平成27年度大学講座寄付先選考の件
- ・平成27年度学術・研究助成先選考の件

10月6日

第32回理事会開催

- ・平成27年度 大学講座寄付の対象者並びに寄付金額決定の件
- ・平成27年度 学術・研究助成の対象者並びに助成金額決定の件
- ・平成27年度 海外奨学金の新規校追加の件

平成28年 3月17日

第33回理事会

- ・ 平成28年度事業計画及び同収支予算承認の件
- ・平成28年度事業(奨学金支給)実施の件