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Abstract

Metal-organic framework (MOF) formed by coordination bonds between metal ions
and organic ligands, has uniform pore size and are expected to be applied as gas
separation membranes with excellent separation and permeation capabilities, and for
this purpose, it is necessary to form them into membranes with nanoscale thickness. In
our laboratory, air/liquid interfacial synthesis of highly-oriented MOF nanosheets is
succeeded for the first time. For application, it is necessary to fabricate nanosheets
with large area and uniformity. However, in air/liquid interfacial synthesis method, it
was found that rippling liquid surface caused by the impact of dropping ligand solution
inhibits the growth of nanosheets. Therefore, we proposed air/gel interfacial synthesis
method. The high viscosity of gel prevents the interfaces from being rippled by
vibrations and thus is expected to form uniform and large-area nanosheets. Here, the
effects of rippling liquid surface and the addition of organic polymers to the subphase
on the interfacial reaction was investigated, by evaluating the morphology and domain
size of MOF nanosheets synthesized at air/gel interfaces when the polymer was used as
a gelling agent. As a result, the domain size increased due to the increase in viscosity
of subphase, and the morphology of MOF nanosheets changed depending on the

presence or absence of the polymer.
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Fig. 3 In-plane XRD profiles of H2TCPP-Cu synthesized at
air/gel and air/liquid interfaces.
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Fig. 5 Viscosity of Cu-polymer gel
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each polymer concentration.
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Fig. 6 Schematic diagram of interfacial reactions at air/liquid air/gel interfaces
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