酸化ガリウムを用いた

ホットエレクトロントランジスタの開発

所属: 筑波大学 数理物質系 物理工学域

助成対象者:奥村 宏典

概要

次世代の高速無線通信として、テラヘルツ波の利用が期待されている。縦型素 子、機器の小型化だけでなく、飽和ドリフト速度の物性値を最大限生かせるた め、魅力的である。縦型高周波素子として、ホットエレクトロントランジスタ (HET)がある。HET 用材料として、高い絶縁破壊電界強度を持ち、大面積かつ高 品質の導電性基板が入手可能なβ型酸化ガリウム(Ga₂O₃)に着目した。本研究の 目的は、低価格の超高周波パワー素子実現を目指し、Ga₂O₃ HET を動作させるこ とである。Ga₂O₃ HET を実際に作製し、電気特性評価を行った。ベースの漏れ電 流が大きく、素子動作には至らなかったものの、エミッターベース間に関しては 想定通りの構造を実現し、10³ A/cm²のエミッタ電流が得られた。

abstract

Vertical transistors based on unipolar electron transport, or tunneling hot electron transistors (HET), are much attractive for high frequency applications due to quasi-ballistic transport. Wide bandgap materials operate at high power density and high temperature. 4-inch high-quality *n*-type β -Ga₂O₃ wafers are commercially available. In this study, we fabricated Ga₂O₃ HETs with good emitter-base structure. 研究内容

「背景」

超高度情報化社会の実現には、様々なモノがインターネットに繋がった IoT が不可欠で あり、その根底技術となるのが大容量高速通信である。特に、beyond 5G/6G システムに向 けた高速無線通信として、テラヘルツ波の利用が期待されている。

高速通信用素子として、これまで、砒化ガリウムを用いた高電子移動度トランジスタ (HEMT)が用いられてきた。HEMTは、ヘテロ接合界面に現れる2次元電子ガスの存在により、 高い電子移動度が得られる。最近では、大容量通信に向けた高温・高出力動作への要望が 高まり、窒化ガリウム(GaN)を用いた HEMT の実用が既に始まっている。しかし、HEMT は、 飽和ドリフト速度が縦型光学フォノン散乱によって制限されてしまい、テラヘルツ波帯で の動作が難しい。縦型素子であれば、真性遅延が相互コンダクタンスによって決まり、飽 和ドリフト速度の物性値を最大限生かすことができる。縦型高周波素子として HET がある。 HET では、エミッタから放出された電子が、エミッタバリア層をトンネルした後、準バリ スティック伝導によりベース層を通過し、コレクタ層に到達する。ホットエレクトロンを キャリアに用いることで、高い動作速度、電流密度、相互コンダクタンスが得られる。

HET 作製には、伝導帯エネルギー差 (ΔE_c)のあるヘテロ接合が必要である。私たちは、HET 用材料として、 Ga_2O_3 に着目した。 Ga_2O_3 は結晶多型であり、熱的に最も安定であるのは β ガリア構造である。 β 型 Ga_2O_3 は、高い絶縁破壊電界強度 (8 MV/cm)を持つため素子の高出 力化が可能であり、溶液成長による大面積高品質基板を入手できる。また、酸化アルミニ ウム ($A1_2O_3$)との混晶により、最大 3.2 eV の ΔE_c を得ることができる。これまで、(A1Ga) $_2O_3$ 結晶成長と素子作製に従事し[1]、世界で初めて (A1Ga) $_2O_3$ 層をチャネルとする電界効果ト ランジスタ (MESFET)の動作に成功している[2]。また、世界に先駆けて Ga_2O_3 共鳴トンネル ダイオード (RTD)の作製に挑戦し、急峻な ($A1_{0.15}Ga_{0.85}$) $_2O_3/Ga_2O_3$ 界面が得られることを確認 済みである[3]。HET は、RTD と類似の構造であるため、 (A1Ga) $_2O_3$ 結晶に関する豊富な知 識と技術を生かすことで、作製可能ではないかと考えた。

「目的」

本研究の目的は、低価格の超高周波パワー素子実現を目指し、β型 Ga₂O₃ HET を動作さ せることである。 「結果」

 β -Ga₂O₃ 結晶中で最も成長速度の大きい (010) 面を利用した。結晶成長には、プラズマ 援用分子線エピタキシ (PAMBE) 法を用いた。PAMBE 法による β - (A1Ga)₂O₃ 成長では固溶限界 があり、A1 組成は最大 20%までしか取り込むことができない [1] ことを考慮して下記の HET を試作した。 (a)

本研究で作製した HET の 構造を図 1(a)に示す。20 nm 厚 n型 Ga₂O₃エミッタ層/10 nm 厚 (A1Ga)₂O₃エミッタ障壁層 /30 nm 厚 n型 Ga₂O₃ベース層 /50 nm 厚 (A1Ga)₂O₃ コレクタ 障壁層/200 nm 厚 n 型 Ga₂O₃ コレクタ層で構成されている。

障壁層/200 nm 厚 n 型 Ga_2O_3 マレクタ層で構成されている。 ドナー不純物には、フラックス量で安定制御可能な SnO_2 を用いた。ベース層およびコレク タ層の (A1Ga) $_2O_3$ エッチングには、塩素系反応性イオンエッチング (RIE)を用いた[4]。

作製した HET 構造のバンドダイヤグラムを図1 (b) に示す。多数キャリアである電子 は、ベースエミッタ間の電圧 ($V_{BE}>0$) により、 ϕ_{EB} の過剰なエネルギーを有しながらベー ス層に注入される。この時、ベースコレクタ間に逆バイアス ($V_{CB}<0$) を付加することで、 ホットエレクトロンは、電子の平均自由工程 (λ) 以下の厚さのベース層を通過し、最小 限の散乱でコレクタ層に到達する。電子の注入効率αは、コレクタ電流 I_c とエミッタ電流 I_E により、 $\alpha(=\alpha_B\alpha_{BC}\alpha_C) = \frac{I_C}{I_E}$ と表される。 I_E は、エミッタ層からベース層へのトンネル確率 に支配されるため、主に ϕ_{EB} と共に増大する。今回、再現性の観点から、エミッタ障壁層の A1 組成を 15%としているため、 ϕ_{EB} は 0.2 eV 程度である。ベース層の注入効率 α_B は、 α_B = exp($-W_B/\lambda$)の関係により、ベース層厚 W_B に強く影響を受ける。 W_B は小さいことが好まれる が、薄すぎるとベース層上でエッチングを止めることが難しくなるため、30 nm とした。 ベースコレクタ間効率 α_{BC} は、コレクタ障壁層での量子力学的反射に強く影響を受ける。 ϕ_{CB} は ϕ_{EB} よりも小さい必要があるが、 ϕ_{CB} が小さすぎるとベース層からコレクタ層への漏れ 電流が増大してしまう。また、コレクタ層のA1 組成が高い程、素子耐圧を大きくできるこ とから、コレクタ層障壁の A1 組成を 10%とした。コレクタ層の効率 α_C はコレクタ層の散 乱に依存する。作製した Ga203 HET の電流-電圧測定を室温で調べた。 $V_{BE} = 3 V における、様々な膜厚のエミッタ障壁層を有する n-Ga₂O₃/(A1Ga)₂O₃/n-Ga₂O₃バ$ $リア構造のバンドダイヤグラムと <math>V_{BE}$ - I_E の実験結果を図 2 に示す。エミッタ障壁層を薄く するほど、トンネル確率が増大することから、想定通りに I_E が増大した。 $V_{BE} = 2 V$ 付近 で飽和し始めており、バンドダイヤグラムの計算結果と合致する。このことから、エミッ タ層およびベース層までの構造は、ほぼ想定通りの試料ができていると考えられる。

図 2 : (a) n-Ga₂O₃/(A1Ga)₂O₃/n-Ga₂O₃ バリア構造のバンドダイヤグラム。(b)(c) n-Ga₂O₃/(A1Ga)₂O₃/n-Ga₂O₃バリア構造の電流電圧特性。

 $V_{CB} = -5$ V における、Ga₂O₃ HET の $V_{BE} - J_c$ および $V_{BE} - J_B$ を図 3(a)に示す。 V_{BE} を増大さ せても J_c は増大せず、 J_B のみ増大した。 $V_{CB} = -5$ V における、Ga₂O₃ HET の $V_{CB} - I_c$ を図 3(b)に示す。 I_B を増大させても I_c に変化はなかった。これらの結果は、ベース層での漏れ 電流が大きく、ホットエレクトロンがコレクタ層に到達していないことを示唆している。

図3: (a)コモンベースにおける β — Ga₂O₃ HET の3端子測定。(b) コモンエミッタにおける β — Ga₂O₃ HET の3端子測定。

「今後」

熱電子放出電流を低減するため、まずは低温測定を試みる。高いベース電流は、ホット エレクトロンの多くが、コレクタ層に入る前に、散乱および量子力学的反射により、ベー ス層中で熱を持ちすぎていたためと考えられる。(A1Ga)₂0₃コレクタ障壁層に組成傾斜をつ け、更に、ベース層を薄くすることで改善が期待できる。素子作製技術の観点からベース 層厚を 30 nm としたが、エッチング速度を厳密に制御することで、今後は 10 nm 以下のベ ース膜厚を目指す。ベース層厚およびコレクタバリア高さを小さくすることで、ベース層 での散乱確率が低減し、素子動作だけでなく、電流増幅率の増大が期待できる。

本研究は、衛星通信用などの高周波発振器の小型軽量化に繋がる、実用的な研究である。 GaNと比較して、Ga₂O₃は低価格かつ結晶欠陥密度が小さいため、同程度の高周波かつパワ ー素子性能を維持しながら、実用性の高い素子を実現できる点が意義深い。また、ベース 層の厚さ制御により、Ga₂O₃層中のバリスティック輸送の平均自由工程が間接的に明らかに なる事から、学術的にも興味深い。Ga₂O₃層を用いた量子構造の物性を調べた報告はまだ寡 少であることから、Ga₂O₃HETに関する研究は非常に独創的と言える。これまで、テラヘル ツ帯で動作するパワー素子作製技術は確立されておらず、今後、Ga₂O₃HETの動作と特性改 善が実現すれば、次世代の高速通信用素子分野を大きく変革させる潜在性を有する。

引用文献

[1] H. Okumura, "Electrical properties of heavily Sn-doped (AlGa) 203 layers on Ga203
(010) substrates", Jpn. J. Appl. Phys. 60, 065504 (2021).

[2] H. Okumura, Y. Kato, T. Oshima, T. Palacios, "Demonstration of lateral field-effect transistors using Sn-doped β -(AlGa)203 (010)", Jpn. J. Appl. Phys. **58**, SBBD12 (2019).

[3] H. Okumura, "Growth of double-barrier β -(AlGa)₂O₃/Ga₂O₃ structure and heavily Sn-doped Ga₂O₃ layers using molecular-beam epitaxy", Jpn. J. Appl. Phys. **59**, 075503 (2020).

[4] H. Okumura and T. Tanaka, "Dry and wet etching for β -Ga₂O₃ Schottky barrier diodes with mesa termination", Jpn. J. Appl. Phys. **58**, 120902 (2019). 本助成に関わる成果物なし