電解液を用いない有機レドックス・フロー電池の開発

<u>所属:京都大学大学院工学研究科</u>合成・生物化学専攻 助成対象者:清水 章弘

概要

ジエチレングリコールモノメチルエーテル基を有する、室温で液体の ベンゾキノンおよびナフトキノン誘導体を設計・合成した。液体のキノ ン誘導体は支持電解質を溶解でき、活物質として用いることができた。 液体のキノン誘導体を用いたリチウム二次電池(電解液LiBF4/炭酸プロ ピレン)は、静的セル、フローセルのどちらにおいても、高電圧、高容 量、高エネルギー効率、高サイクル特性を示した。溶媒を用いない正極 電解液を用いたリチウム二次電池は、198 Wh L⁻¹ という高いエネルギ 一密度を示した。

abstract

Liquid benzoquinone and naphthoquinone derivatives having diethylene glycol mono methyl ether groups were designed and synthesized as redox active materials that dissolve supporting electrolytes. The Li-ion batteries using the liquid quinones in $LiBF_4/PC$ as cathode materials exhibited good performances in terms of voltage, capacity, energy efficiency, and cyclability in both static and flow cells. The battery using solvent-free catholyte exhibited high energy density of 198 Wh L⁻¹.

研究内容

背景

レドックスフロー電池^[1]は大規模蓄電デバイスとして注目を集めている。水系の全バ ナジウムレドックスフロー電池が最も盛んに研究されているが、電圧が高くできないこと と資源に偏りがあるという問題を抱えている。有機活物質を用いた非水系のレドックスフ ロー電池の開発も盛んに行われているが^[2]、有機活物質の電解液への溶解性の低さが問題 である。最近では、高い溶解性を示す有機活物質の研究も行われているが、高エネルギー 密度を実現するための、新しい方法の開発が期待されている。

目的

我々は溶媒を用いないレドックスフロー電池の開発が、これらの問題に対する究極の解 決策であると考えた。そこで、支持電解質を溶解できる液体の有機化合物を開発し、レド ックスフロー電池の活物質として利用することを考えた。今回は、正極活物質の開発を目 的とし、キノン誘導体の研究を行った。

結果

高容量の活物質を開発するために、分子量の小さなベンゾキノンおよびナフトキノンを 用いることにした。融点を低下させるために、エチレングリコールモノメチルエーテルま たはジェチレングリコールモノメチルエーテルを導入したキノン誘導体 (1a, 1b, 2a, 2b) を設計・合成した (Figure 1a, b)。1a、2a は室温で固体であったが、1b、2b は室温で液 体であり、ガラス転位温度はそれぞれ-73.7、-65.7 ℃であった。サイクリックボルタン メトリー法で、酸化還元挙動の観測を行ったところ、二電子の酸化還元が可能であり、支 持電解質にリチウム塩を用いることで、電位が高くなることがわかった (Figure 1c, d)。 1b、2b を正極活物質 (濃度 1 mM)、金属リチウムを負極に用いた二次電池 (電解液 LiBF₄/PC、静的セル)を作成し、充放電試験を行ったところ、良好な充放電特性が観測さ れた。放電電圧は約 3.0 V であり、水系のレドックスフロー電池を大きく上回る。100 サ イクル後の電流効率、電圧効率、エネルギー効率はほとんど低下せず、100 サイクル後の 容量維持率は、1b が 82%、2b が 83%であった。フローセルを用いても充放電可能であり (Figure 2a, c)、100 サイクル後の容量維持率は、1b が 62%、2b が 78%であった(Figure 2b, d)。

Figure 1. Structure and redox of (a) benzoquinone derivatives and (b) naphthoquinone derivatives. CV of (c) **1b** and (d) **2b** (5 mM) in PC using 0.1 M Bu₄NBF₄ (dashed line) and 0.1 M LiBF₄ (solid line) as supporting electrolytes. CV of (e) **1b** and (f) **2b** (5 mM) in PC using 0.1 M LiBF₄ at sweeping rates of 10, 25, 50, 100, and 200 mV/s.

Figure 2. Charge and discharge properties of 1b and 2b (1 mM) in LiBF₄/PC using a flow cell with the current of 1.0 mA. Charge and discharge curves at 1^{st} , 50^{th} , 100^{th} , and 200^{th} cycles of (a) 1b and (c) 2b. Charge and discharge capacities and efficiencies of (b) 1b and (d) 2b.

充放電の速度を変化させて測定を行ったところ、電流の増加に伴い、容量が減少した。 3.0 mA で測定したときの容量は、0.1 mA で測定した時の容量の約 70%であった。電流を 増加させると充電電圧と放電電圧の差が増加し、電圧効率も約 70%に低下した。充放電の 様子を詳細に調べるために、In situ FT-IR 測定を行ったところ、1670 cm⁻¹ 付近の C=0 伸 縮振動の吸収が増減した。従って、充電状態を IR でモニターできることがわかった。高容 量化を目指し、キノン 2b の濃度を 600 mM のレドックスフロー電池を開発したところ、57.6 Wh L⁻¹のエネルギー密度を実現した。

溶媒を用いないレドックスフロー電池を開発するために、ナフトキノン誘導体 2b が溶 解できる支持電解質を探索したところ、lithium bis(trifluoro methanesulfonyl)imide (LiTFSI)を溶解することがわかった。溶媒を用いない正極電解液 2b : LiTFSI = 1 : 0.3 (モル比)の濃度は 2.33 M であり、水系の全バナジウムレドックスフロー電池の濃度に匹 敵する値である。負極電解液の混入を防ぐために、リチウムイオン伝導ガラスセラミック ス(LICGC™) セパレーターを用いたセルを作成し(Figure 3a)、充放電試験を行ったところ、 可逆な充放電挙動が観測された(Figure 3b)。2.0 mA で 10 サイクル充放電を行っても、容 量はほとんど減少しなかった。電流を減少すると容量と電圧が向上し、0.5 mA の時に 198 Wh L⁻¹のエネルギー密度を示した(Figure 3c)。この値は我々の知る限り、非水系の有機レド ックスフロー電池として、最も高い値の1つである。

Figure 3. (a) Schematic of a static cell used for solvent-free catholyte. (b) Charge and discharge capacities and efficiencies of the battery using **2b** + LiTFSI as catholyte with the current of 2.0 mA. (c) Charge and discharge curves with the current of 0.5, 1.0, 2.0, 3.0, and 5.0 mA.

今後

本研究により液体の有機活物質を用いれば、非常に高いエネルギー密度を実現できるこ とを示した。溶媒を全く用いないレドックスフロー電池を開発するためには、液体の負極 活物質の開発が必要である。現在、酸化還元電位の低い有機活物質を用いて、検討を行っ ている。

引用文献

- W. Wang, Q. Luo, B. Li, X. Wei, L. Li, Z. G. Yang, Adv. Funct. Mater. 2013, 23, 970.
- Y. Zhao, Y. Ding, Y. Li, L. Peng, H. R. Byon, J. B. Goodenough, G. Yu, Chem. Soc. Rev. 2015, 44, 7968.

本助成に関わる成果

[論文発表]

1. "Liquid Quinones for Solvent-Free Redox Flow Batteries"

Akihiro Shimizu, Keisuke Takenaka, Jun-ichi Yoshida, submitted.

[口頭発表]

1. 「液体有機活物質の開発とレドックス・フロー電池への応用」

竹中啓祐·<u>清水章弘</u>·吉田潤一、日本化学会第 96 春季年会、京都、2016 年 3 月 25 日

2. "Highly Soluble Quinones As Active Materials for Nonaqueous Redox Flow Batteries' Keisuke Takenaka, <u>Akihiro Shimizu</u>, Jun-ichi Yoshida, PRiME 2016、アメリカ、ハ ワイ、2016 年 10 月 3 日

[ポスター発表]

なし

[その他]

なし